Q.P.Code: 18EC0407

R18

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

- granital compression

B.Tech II Year II Semester Supplementary Examinations May/June-2024
ANALOG CIRCUITS

	The second of the Engineering)			
(Electronics and Communication Engineering)				s: 60
Tim	e: 3 Hours PART-A			
	(Answer all the Questions $5 \times 2 = 10$ Marks)			
		CO1	L2	2M
1	a What is cutoff frequency, f_{β} and write down its expression.		L2	2M
	b Compare the performance of various feedback amplifiers.	CO2		
	c What are the differences between Push Pull and Complementary	CO ₃	L1	2M
	symmetry class B power amplifier?			ē
	d List the characteristics of an ideal opamp.	CO4	L1	2M
	e Mention the types of DACs.	CO ₅	L1	2M
	PART-B			
	(Answer all Five Units $5 \times 10 = 50$ Marks)			
	UNIT-I			
		CO1	т 2	10M
2	With the help of necessary circuit diagrams and approximations obtain	COI	كنا	10111
	the expression for CE short circuit current gain and derive the relation			
	between f_{β} and f_{T} .			
	OR			
3	a Explain the effect of cascading on bandwidth of multistage amplifier.	CO1	L2	6 M
	b If the overall lower and higher cutoff frequencies of a two identical	CO1	L3	4M
	amplifier cascade are 600 Hz and 18 kHz respectively, compute the	;		
	values of individual cutoff frequencies of both the amplifier stages.			
	UNIT-II			52
		CO2	1.2	10M
4	Describe the working principle of Wein bridge oscillator and derive the	. CO2		101/1
	expression for frequency of oscillations.			
	OR	CO2	т о	ON AT
5	a Describe the working principle of Colpitts oscillator and derive the	; CO2	LZ	8M
	expression for frequency of oscillations.			
	The second of the frequency	\cdot $CO2$	T 2	2M

b In the Colpitts oscillator, $C_1 = 0.2 \mu F$ and $C_2 = 0.02 \mu F$. If the frequency **CO2** L3

a With neat diagram explain Series fed, Directly coupled Class A Power CO3 L2

UNIT-III

of oscillation is 10kHz, find the value of inductor.

Amplifier and derive its maximum efficiency.

Page 1 of 2

2M

5M

b A series fed Class A amplifier shown if the Fig, operates from dc source CO3 and applied sinusoidal input signal generates peak base current 9mA. Calculate : (i) Quiescent currentI_{CQ}, (ii) Quiescent voltage V_{CEQ}, (iii) DC

input power PDC, (iv) AC output power PAC and (v) Efficiency.

mode gains.

		OR			
7	a	Discuss with diagram, Transformer coupled Class A Power Amplifier and derive its Maximum efficiency.	CO3	L1	5M
	b	A Class B push pull amplifier drives a load of 16Ω , connected to the secondary of ideal transformer. The V_{cc} is 25V. If number of turns on primary is 200 and secondary is 50. Calculate maximum power output, DC power input and efficiency.	CO3	L3	5M
8	a	Draw a non inverting amplifier using an opamp and derive the expression for its closed loop voltage gain.	CO4	L2	5M
	b	Draw the circuit diagram of a Differential Amplifier and derive the expression for its output voltage. Write about difference and common	CO4	L2	5M

OR

9	Explain the Schmitt	Trigger	with	neat	circuit	diagram,	input and	output	CO 4	L2	10M
	waveforms.										

UNIT-V

10	a	Draw a First order low pass active filter and derive the transfer function	CO ₅	L2	5M
		its frequency response.			
	b	Design a second order Butterworth low pass filter having upper cutoff	CO ₅	L3	5M

Design a second order Butterworth low pass filter having upper cutoff CO5 L3 frequency of 1KHz.

OR

Draw the circuit diagram of inverted R-2R ladder DAC network. Explain CO5 L2 11 10M its working. List out the advantages over R-2R ladder network.

*** END ***